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Minimum solid area models applied to the
prediction of Young’'s modulus for cancellous bone
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Dublin, Belfield, Dublin 4, Ireland
E-mail: alun.j.carr@ucd.ie

In developing models for the mechanical behavior of cancellous bone, accurate prediction of
Young’s modulus as a function of the pore fraction and morphology is a requirement.
Previous workers have suggested models which provide good statistical fits, but most of
these models are highly idealized, with no treatment of the actual morphology of the
porosity. In the field of engineering ceramics, simple minimum solid area models have been
developed over the past four decades to describe the mechanical properties of porous
structural ceramics. This paper applies these models to data for cancellous bone, and it is
shown that one, developed specifically for high porosity materials, gives realistic predictions
of tissue modulus and a good statistical fit to well-established data. This model should prove
to be useful in biomechanical analyses involving cancellous bone tissue.
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1. Introduction

Young’s modulus is a fundamental property of materials.
In biomechanics, knowledge of the Young modulus of
cancellous bone, and its variation with porosity, is
required for, amongst other things, finite element
analysis of orthopaedic implant systems.

Cancellous bone presents particular difficulties when
attempting to produce a model for Young’s modulus. At
the smallest scale, the individual trabeculae are complex
fibrous composites of inorganic bone mineral interwoven
with a largely organic phase, which is itself a composite
of mineral particles in a collagen matrix (we shall refer to
the trabecular-level composite as tissue). At the next
level up, the trabecular tissue forms rods and plates
which enclose large voids (macropores), which may be
roughly spherical (i.e., equiaxed, in isotropic cancellous
bone) or elongated (anisotropic bone); these structures
are illustrated in Figs. 1 and 2.

Much work has been carried out on modeling the
Young modulus of bone at a macroscopic level, based on
curve-fitting using empirical formulae, usually with the
apparent density (which is a function of the overall
porosity level) as the independent variable, e.g. [1-4].
Perhaps the best-known of these models is that of Carter
and Hayes, who proposed that the Young modulus is
proportional to the cube of the apparent density (p,,,) of
the bone, with a correction for strain rate.

While these empirical models provide good fits to
specific sets of data, they contain no explicit treatment of
the pore size, shape, and orientation, or of the geometry

papp

of the solid structures which define the pores. As a
consequence, in many cases the equations cannot be
applied to other data sets.

Gibson [5] and Rajan [6] re-analyzed the data of Carter
and Hayes [1] for cancellous bone, using analytical
models developed for cellular solids by Gibson and
Ashby [7], and showed that while E oc p*> for both
asymmetric and equiaxed closed porosity, a better
relationship for open porosity was E oc p>.

A rigorous multiple-regression statistical analysis of
many sets of data for the mechanical properties of
cancellous bone, isolating the effects of factors such as
orientation of the bone sample and the type of test
method, was carried out by Rice et al. [8]. The complete
model included terms for proportionality to p, p?, and p?
(the linear relationship deriving from the work of
Christensen [9], and the quadratic and cubic relationships
in accordance with the models of Gibson and Ashby [7]),
and it was concluded that Young’s modulus is
proportional to p? with p < 0.001.

Finite element analysis (FEA) has also been used to
determine the tissue modulus (£, the Young modulus of
the trabecular tissue) of cancellous bone: van Rietbergen
et al. [10] created a model based on a digitized
7 x 7 x 7Tmm cube of cancellous bone. A range of
values for E, was then determined by sophisticated and
computationally intensive FEA, in which Young’s
modulus for the overall block was matched to values
from empirical equations proposed by Hodgkinson and
Currey [3]. This is in contrast to the approach of Carter
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Figure 1 Morphology typical of cancellous bone with equiaxed pores
(isotropic).

and Hayes [1], who followed Wolff [11] in assuming that
dense trabecular tissue has elastic properties similar to
dense cortical bone (other workers have claimed that this
is an incorrect assumption [8,12], although recent
nanoindentation studies on trabeculae by Rho et al.
[13] have produced values for E, similar to cortical
bone).

Effective methods of predicting the elastic moduli of
engineering materials have received much attention over
the last four decades, driven, in the case of refractories
and advanced structural ceramics, by the practical need
to quantify effects of processing and defects on the bulk
mechanical properties. There are three main approaches:
composite theory [14—17], cellular solids [7], and
minimum solid area [18-24]. The first approach assumes
a two-phase material, with one phase having zero
stiffness; the latter two assume a single phase permeated
with voids.

Although cancellous bone is undoubtedly a composite
material at the tissue level, the open macrostructure
defined by the trabeculae may be treated as a porous,
single-phase material, with homogenized properties.
Piekarski [25] has already suggested the application, to
bone, of an equation developed by Mackenzie [26], and
used by Coble and Kingery [27] to describe alumina
ceramics containing between 5% and 50% artificially
introduced isolated porosity; however, this model has
been replaced for ceramics work by those of Spriggs
[18], Rice [22], and Nielsen [16] (described below), and
will not be considered here.

This paper considers the applicability of minimum
solid area models to the prediction of Young’s modulus
for cancellous bone. These have the advantage over the
models currently used in biomechanics in that they
incorporate a parameter describing pore morphology and
packing, as well as pore volume fraction. Non-linear
regression analyses of the minimum solid area and other
models (such as cellular solids) were carried out in the
present work using the well-established data of Carter
and Hayes [1]. These analyses yielded statistical
information, allowing comparison of the different
models.
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Figure 2 Morphology typical of cancellous bone with elongated pores
(anisotropic).

2. Theory and models
2.1. Models currently in use for cancellous
bone

Carter and Hayes [1] carried out compression tests on
blocks of cancellous bone both with and without marrow
present, in order to measure the Young modulus. They
used five strain rates (¢ = 0.001, 0.01, 0.1, 1.0, and
10.0s 1), in order to study the sensitivity of properties to
strain rate. Porous platens were used so that the marrow
would not be constrained, allowing it to flow out of the
bone blocks; however, at the highest strain rate the
porosity in the platens was too constricting, resulting in
the marrow becoming pressurized within the cancellous
bone pore system (accordingly, their £ = 10s~! data for
specimens containing marrow are not used in the current
work). Carter and Hayes fitted straight lines through log—
log plots of their data (not strictly a valid approach, see
Myers [28]) and found that the Young modulus (i) was
proportional to the cube of the apparent density (py,)
and (ii) exhibited a slight strain-rate sensitivity,
proportional to €%, Thus, the expression proposed by
Carter and Hayes for the variation of Young’s modulus of
cancellous bone with apparent density and strain-rate is:

E= kCHéO.06 pgpp (1)

where k¢ is a constant relating to the tissue modulus
(keu~Ey/pd; Eo and p, are the Young modulus and
density of dense trabecular tissue, respectively), € is the
strain rate, and p,, is the apparent density of the block of
bone.

Gibson [5] and Rajan [6] fitted log—log models,
derived by Gibson and Ashby [7] for cellular materials,
to the data of Carter and Hayes [1]. The two models are:

E= kGA2p§pp (2)
E= kGA3pe31pp (3)

where kga, and kgu5 are constants relating to the tissue
modulus (kga, = Eo/pg and kgaz = Eo/pp)-

The statistical analysis of Rice et al. [8] showed that
Equation 2 was not substantially worse at predicting
Young’s modulus than a linear combination of Equations
2 and 3, and that either of these was somewhat better than
Equation 3 on its own.



2.2. Models currently in use for ceramics
Spriggs [18] first proposed that the earlier work of
Ryshkewitch [29], Duckworth [30], and Knudsen [31] —
who used minimum solid area models to predict the
influence of porosity on strength of ceramics — could be
extended to the elastic moduli (accordingly, we shall
refer to this as the Spriggs model, following Wachtman
[32]). The Spriggs equation is a simple exponential
degradation of the modulus of the fully dense material,
and has the form:

E = Eyexp(— bP) 4)

where E is the Young modulus of the porous material, b
is a pore-geometry term relating to the pores defined by
the packing of the solid phase, and P is the pore volume
fraction ( pore volume/total volume). Spriggs empirically
related b to the porosity (pore volume fraction, P)
introduced by the fabrication method for the ceramic.
Brown et al. [33] presented analytically derived values of
b for different pore geometries and orientations, but only
in the context of strength. For elastic moduli, Rice [24]
identified a similar range of empirically derived values
for b relating to pore geometry. The Spriggs model
ceases to apply at high porosities, with E — E exp(— b),
rather than £ —» 0, as P — 1.

Rice [22] modified the Spriggs model to apply at high
(but not low) porosities by interchanging the solid and
pore phases (i.e., considering the packing of the pores
rather than the particles), and modifying the pore
geometry term accordingly, giving:

E = E[1 —exp{—0'(1-P)}] (5)

where b’ is a geometry term relating to the solid phase, as
defined by the packing and shape of the pores.

Another model, initially deriving from work on civil
engineering composites such as concrete, is that of
Nielsen [15, 16]. This has the form:

3 (1-P)?
PR k) 1P “

where ky is the pore-geometry factor (0 <ky < 1).

2.3. Curve fitting

The models described above were applied here to
experimental data published by Carter and Hayes [1]
for the Young modulus of human cancellous bone,
measured in compression. The data were extracted from
the published graphs using the DataThief computer
application (version 2.0; K. Huyser and J. van der Laan,
National Institute for Nuclear Physics and High Energy
Physics, Amsterdam, The Netherlands). Apparent den-
sity (p,pp) Was converted to volume fraction porosity (P):

P=1- (papp/p()) (7)

assuming a trabecular tissue density, p,, of 1.82 g/cm3
[34].

All models to be fitted were non-linear in p,,, or P, and
although all models except for those of Rice and Nielsen
could be log-transformed in order to linearize the
problem, this was not done, as the structure of the
errors would then be incorrect, and the parameters

obtained would not be the same as those from non-linear
fitting of the untransformed model [28].

Curve-fitting was carried out in Excel 4.0 for
Macintosh (Microsoft Corporation, Redmond, WA,
USA). The model parameters (such as E, and b in the
Spriggs equation) were varied by the Solver add-in
(which uses the generalized reduced gradient (GRG2)
non-linear optimization algorithm) to minimize the sum
of the squares of the differences (sum of the squares for
error, SSE) between the experimental data (E,) and
calculated values (E,,y4e ), for each model [35]:

SSE = Z(Eobs - Emodel)2 (8)

Also calculated was SS»,, t_he sum of the squares of the

deviation from the mean (E):

Ssyy = Z(Eobs - Eobs)z (9)

This allowed the calculation of the coefficient of
determination, 2, for the fitted model:
SS SSE

P T (10)
SS,,

and from this a ¢-statistic could be derived:

rvn—2
== 11
V1—r? (1)
(where n is the sample size) permitting computation of a
significance level, p, for the fit.

3. Results

All of the Carter and Hayes [1] data for human
cancellous bone, except for those measured at the highest
strain-rate (10s~!) for specimens with marrow, were
used here. Since Carter and Hayes stated that strain-rate
had only a small effect on the measured modulus, the
data were pooled (as they were by Gibson [5] and Rajan
[6]), irrespective of strain rate, for fitting with the Gibson
and Ashby [7], Spriggs [18], Rice [22], and Nielsen [16]
models. When fitting with the model of Carter and Hayes
[1] the same data were used, but account was taken of the
strain rate, as per Equation 1. Three data sets were fitted:
cancellous bone (i) with marrow, (ii) without marrow,
and (iii) these two sets combined. The models were all
fitted to the data sets using Excel, as described above, and
the results are summarized in Table 1.

During curve fitting, the Solver was allowed to vary
the value of k¢ in the Carter and Hayes model — this was
not constrained to the value of 3790 proposed by Carter
and Hayes, as it was found to give an extremely poor fit.
The regression line used by Carter and Hayes appears to
have been drawn to minimize SSE in the log domain,
rather than the linear domain, thus giving excessive
weighting to samples with low apparent densities [28].
The Solver was allowed to vary kgx, and kgasz in the
Gibson and Ashby models for the same reason. When
fitting the Spriggs, Rice, and Nielsen models, the Solver
was permitted to vary both E, and b, E, and ', and E
and ky, respectively. Figs. 3—5 show the best-fit curves
obtained for the Gibson and Ashby, Spriggs, and Rice
models (note that, for consistency with previously
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TABLE I Fitted parameters for the models of Carter and Hayes [1], Gibson and Ashby [7], Spriggs [18], Rice [22], and Nielsen [16], using data

from Carter and Hayes [1]

Model Parameters r? P
Carter and Hayes ken
With marrow 1385 0.585 2x 1078
Without marrow 2386 0.396 7x107
Combined 1617 0.288 6x10-3
Gibson and Ashby (p?) kgan — E,(MPa)
With marrow 517 1714 0.581 3x1078
Without marrow 811 2686 0.678 1x10~1
Combined 601 1990 0.477 7x10~ 1
Gibson and Ashby (p?) kgas — Ey(MPa)
With marrow 1053 6348 0.373 5%1073
Without marrow 2128 12828 0.381 1x10-¢
Combined 1255 7566 0.065 2x 1072
Spriggs b E,(MPa)
With marrow 7.08 20855 0.607 8x10~°
Without marrow 8.99 133456 0.688 5x10~ 1
Combined 6.51 14994 0.572 1x10-"
Rice v Ey(MPa)
With marrow 0.046 8908 0.527 3x1077
Without marrow 0.072 6680 0.638 2x10-12
Combined 0.089 4984 0.601 1x10-"
Nielsen kn E,(MPa)
With marrow 3.77 775 Invalid result (ky > 1)
Without marrow 5.89 884 Invalid result (ky > 1)
Combined 13.49 573 Invalid result (ky > 1)

published graphs, these are log—log plots, and that a fit
which minimizes SSE in the linear domain can produce a
regression line which optically appears to be poor in the
log domain). The Nielsen model was not plotted, as in all
cases it converged to a value for ky > 1, i.e., outside the
legitimate range.

4. Discussion

For the purposes of this comparison, a realistic value for
the Young modulus of trabecular bone tissue (E,) was
considered to be one which lay in the range reported in
the literature [36-39,12,13] (Table II, mean of
12.3GPa). Using finite element methods, van
Rietbergen et al. [10] estimated the tissue modulus of
cancellous bone to lie in the range 2.23—10.1 GPa, with a
mean of 5.91 GPa, which is slightly greater than the
smallest value in Table II.

The Gibson and Ashby p> model was found to be a
good fit to the Carter and Hayes data (Table I), in most
cases superior to the Carter and Hayes model, despite the
latter’s additional correction for strain rate; this is also in
agreement with the findings of Rice et al. [8]. However,

TABLE II Published values of E for cancellous bone

Source E (GPa)
Townsend and Rose [36] 11.4
Ashman and Rho [37] 13.0
Ashman and Rho [37] 10.9
Mente and Lewis [38] 7.8
Choi et al. [39] 5.7
Rho et al. [12] 14.8
Rho et al. [13] 19.4
Rho et al. [13] 15.0
Mean of above 12.3
95% confidence limit + 3.6
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the Gibson and Ashby p?> model predicts (assuming a
tissue density of 1.82g/cm®, and given that the model
requires that kg, = Ey/p3) Young moduli of 1.7 GPa
(with marrow), 2.7 GPa (without marrow), and 2.0 GPa
(combined data sets), all of which are low compared to
the values in Table II and to those from the FE analysis of
van Rietbergen et al. [10]. It would also have been
expected that the model should predict slightly higher
moduli for the samples containing marrow than for those
without marrow as, despite the porous platens used by
Carter and Hayes in their tests, some small pressurization
of the pore fluid might be expected. However, this model
predicted the reverse situation, with the marrow-free
specimens appearing to be stiffer.

In contrast, the Gibson and Ashby p* model (which,
apart from the lack of strain-rate correction, is identical
to the Carter and Hayes model) gave a poorer fit than all
models except Nielsen’s, but produced more realistic
values for Ey(= kga3pp) than the p? model: 6.3, 12.8,
and 7.6 GPa, for the marrow, no marrow, and combined
data sets, respectively. The poor fit accords well with the
findings of the statistical study by Rice et al. [8]. Again, a
higher modulus was predicted for the bone with the
marrow removed than for the bone which contained
marrow.

Despite excellent statistics, the Spriggs model pre-
dicted E,, values of 20.8 GPa (with marrow), 133.5 GPa
(without marrow), and 15.0 GPa (combined data). With
the exception of the case of the bone without marrow,
which has far too high a value, these figures for Young’s
modulus are in reasonable agreement with the range of
experimental values in Table II. The pore geometry
factor (b) lay within reasonable limits, except in the case
of the bone with no marrow, where the Solver
compensated for the high value for E, by setting b to
an excessively large 8.99. Once again, the bone without
marrow was predicted to be stiffer than bone containing
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Figure 3 Young’s modulus data from Carter and Hayes [1] for
cancellous bone with marrow, showing best fit lines for the Gibson and
Ashby, Spriggs, and Rice models.

marrow. The poor behavior of the Spriggs model with the
no-marrow data was almost certainly due to the porosity
level being higher than that for which the model is
considered valid (i.e., porosity lying in the range for
which the Rice model is more appropriate).

When the Rice high-porosity modification of the
Spriggs model was used, the predictions for the tissue
modulus substantially improved. With this model, E, was
predicted as 8.9 GPa (with marrow), 6.7 GPa (without
marrow), and 5.0 GPa (combined), in excellent agree-
ment with the published values for cancellous bone
tissue. The Solver also predicted a realistic value for the
pore geometry factor, b'. Statistically, the Rice model
provided a fit which was good (p <0.0001 in all cases),
and comparable to the best of the other models. It was
also the only model to predict a reduction in stiffness of
the bone when the marrow is removed.

The Nielsen model was found to be inappropriate for
cancellous bone. In all cases the solution converged to a
pore geometry factor, ky, which was outside the
legitimate range.

The Rice high-porosity modification of the Spriggs
model appears to be viable for describing and predicting
the elastic modulus of cancellous bone. It predicts a
realistic value for the tissue modulus, lying within the
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Figure 4 Young’s modulus data from Carter and Hayes [1] for
cancellous bone without marrow, showing best fit lines for the Gibson
and Ashby, Spriggs, and Rice models.

range of measured values for dense cortical bone. It is
also the only model to predict an increase in Young’s
modulus when marrow is present in the bone.

5. Conclusions

The cellular solid model for open porosity (E oc p*) was
found to give a statistically good fit to the data of Carter
and Hayes. However, it was found to substantially
underpredict the tissue modulus. Better predictions of
tissue modulus were found for the closed porosity
cellular solid model (E oc p?), but the fit to the data
was statistically somewhat poorer. In both cases, the
models predicted that bone containing marrow should be
less stiff than bone without marrow.

The minimum solid area model of Spriggs was not
found to be adequate for modeling highly porous
cancellous bone, with substantial overprediction of the
tissue modulus of bone from which the marrow had been
removed. Similarly, the Nielsen model was found to be
inapplicable to cancellous bone.

The Rice modification of the Spriggs model was found
to combine a good prediction of tissue modulus with a
good statistical fit to the data, and should prove useful for
predicting the Young modulus of cancellous bone for
biomechanical work.
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Figure 5 Young’s modulus data from Carter and Hayes [1] for
cancellous bone with and without marrow, showing best fit lines for the
Gibson and Ashby, Spriggs, and Rice models. (M = samples containing
marrow; NM = samples containing no marrow.)
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